
The first thing that needs to be
said is this: is you’ve had

much experience using Visual
Basic, then it’s good news all
the way!

You’ve got a terrific head start
on understanding Delphi’s compo-
nent based, RAD, philosophy. A
‘component’ is just Delphi-speak
for what Visual Basic developers
habitually refer to as a ‘control’,
and RAD is the new buzz-word for
Rapid Application Development:
the process of building an applica-
tion by choosing components from
a palette, arranging them on a form
and writing the necessary code to
‘glue’ the whole thing together.
Both Delphi and Visual Basic are
component-based RAD systems.

A Better
Development Environment
VB developers will instantly under-
stand the purpose behind Delphi’s
forms, Component Palette and
Object Inspector. They’ll also soon
realise how much better thought
out the Delphi development
environment is. Visual Basic hasn’t
really evolved over the last few
years and its showing its age in all
sorts of ways.

For example, the Component
Palette gives you instant access to
a lot of components without
clutter. The same is true of the
Object Inspector which allows you
to have nested, hierarchical
properties such as the Font
property. If you try double-clicking
on the small ‘+’ sign immediately to
the left of the Font property name,
you’ll find that Delphi will open up
another layer of sub-properties.
This approach can be taken to an
arbitrary number of levels: if you
click the Style sub-property, you’ll
see a set of sub-sub-properties
relating to the style of the wanted
font! One of the key characteristics
of a good user interface is that

it should provide maximum
flexibility with minimum clutter.

Regarding the form window,
Delphi contains all sorts of facili-
ties for aligning and sizing compo-
nents with respect to one another,
something that’s long been missing
from VB. Of course, you can always
buy Visual Basic add-ons such as
ToolThings, and so forth, but the
cost soon mounts up; it’s great to
have all this functionality where it
ought to be: in the development
environment.

Another particularly nice feature
of Delphi is the number of
‘container’ components that are
included with the product. The
NoteBook, Panel and GroupBox are all
examples of ‘containers’ which can
hold one or more other compo-
nents. This allows you to almost
create mini-forms within a form,
easily moving different groups of
controls around to get the effect
you want.

Compilers Versus Interpreters
Most Visual Basic developers
appreciate the fact that VB
programs use an interpreted
system – that’s why you need to
have the VBRUN300.DLL file
somewhere on your hard disk,
which contains the interpreter and
the VB run-time library.

Every time you make a Visual
Basic call such as STR$, MID$, etc,
what gets executed is a small, fast,
machine-code routine deep inside
VBRUN300.DLL. Of course, a huge
number of small, fast routines adds
up to a lot of code: the VB 3.0
version of this file is almost 400Kb
in size. In fairness, it has to be said
that Delphi programs aren’t
exactly petite either – but at least
with Delphi there are various
approaches available to reducing
the size of your executable file.
With Visual Basic, you don’t have
the option, the VBRUN300.DLL file

includes the code for every single
possible Visual Basic call, whether
or not your application uses those
calls.

A more significant difference
concerns the way in which inter-
preters and compilers work.
Microsoft’s Visual Basic inter-
preter uses a very cunning tech-
nique called ‘threading’ which
allows it to tokenise your VB appli-
cation as you’re typing it in.

If you’re not familiar with the
idea of tokenisation, just think of it
as a technique whereby the inter-
preter converts your program into
a more efficient, internal repre-
sentation. The reserved word FOR,
for example, is represented by just
a single byte, meaning that VB can
run your program as fast as possi-
ble, rather than laboriously exam-
ining each character of source
code that you’ve typed in.

This is the reason why Visual
Basic instantly complains if you
type something invalid: the parsing
and tokenisation is happening all
the time, behind the scenes, as you
add code to your application.

The Delphi approach is quite
different. It uses a true compiler
which converts your program
directly into machine code. There
is no intermediate, tokenised form.
This has advantages and disadvan-
tages. By compiling to machine
code, the program runs far faster
than it ever could under an inter-
preted system. Secondly, there’s
no need for an interpreter – you
don’t need to carry the Delphi
equivalent of VBRUN300.DLL
around with your applications. On
the negative side, compilation is
more complex – and therefore
slower – than tokenisation. This
means that you don’t get the
‘instant take off’ response of Visual
Basic, but Delphi’s Pascal compiler
isn’t exactly a slouch, it’s reckoned
to be just about the fastest in the

Moving Up: Visual Basic
by Dave Jewell

Key issues for Visual Basic developers moving up to Delphi

July 1995 The Delphi Magazine 21

industry and it gives you virtually
interpreter-like response with
none of the disadvantages of an
interpreted language.

If you are used to VB, you might
find it strange that you can type
complete garbage into a code win-
dow without Delphi complaining!
Delphi will only syntax check your
code when you actually invoke the
compiler. Having said that, you’ll
notice that Delphi uses ‘syntax
highlighting’, just like VB. As you
type in a code window, language
constructs such as comments,
identifiers and reserved words are
recognised and highlighted using
the colour scheme you’ve chosen.

A Language With a Difference
Without question, learning Object
Pascal is the most challenging
aspect of the move to Delphi.

When I first learnt BASIC, the
GOSUB statement had only just
arrived on the scene and the idea
of passing parameters to subrou-
tines was a long way in the future.
Your average BASIC program list-
ing consisted of miles of spaghetti
GOTO statements, interspersed with
arcane two-letter variable names
which were almost entirely mean-
ingless – and no I’m not talking
exclusively about my own code
here! Fortunately, those days are
far behind us In recent years, BASIC
dialects such as Visual Basic have
become far more ‘structured’ and
Visual Basic is far closer to Pascal
and C/C++ than it’s ever been
before.

Ironically, recently this trend
has reversed somewhat: Visual
Basic’s new ‘variant’ variables are
certainly convenient to use, but
they’re anathema to a strongly-
typed language like Pascal.

With Pascal you must declare all
variables ‘up front’ before you use
them and you have to specify the
type of each variable. You can’t use
something as if it were an integer
one minute and a character the
next. The Pascal compiler rigidly
checks every operation on a
variable to see if it makes sense for
that variable’s type. It would be
nonsense, for example, to use a
floating point variable as an index
into an array.

Delphi does away with the no-
tion of assigning certain types to
variables depending on the final
character of the variable name.
With Visual Basic, a ‘$’ character at
the end of a variable name always
implies a string variable. With
Delphi, everything depends on the
variable declaration. Table 1 lists
some common Visual Basic
variable names and their Delphi
equivalents.

If you really miss Visual Basic’s
variant records, here’s a neat little
trick you can use in Delphi. It
exploits a peculiarity of the Pascal
syntax called the ‘free union’. I first
learned this trick many years ago
when programming in UCSD Pascal
on Apple][computers, and it still
works with Delphi Pascal today !

To create a free union, create a
new type definition like the one in
Listing 1. You can now declare your
own variables of type Variant and
access them using the associated
field names. For example, try this:

var
 v: Variant;
begin
 v.IsBool := True;
 if v.IsInteger = 1 then
 { always beeps! }
 MessageBeep (0);
 {...}

You can add your own types to
the Variant type definition so that
(for example) you could assign to a
floating point Double and then use
an array of bytes to examine the
contents of the Double on a byte by
byte basis. This mechanism
obviously won’t let you perform
automatic type conversion (which
is at the heart of the VB Variant
mechanism) but nevertheless, it’s
a useful way of side-stepping
Pascal’s strong type-checking
when you want to.

Stringing You Along...
Just to make things a little more
complicated, Delphi actually uses
two different types of string
variables. There’s the ‘classical
Pascal’ String type and there’s the
newer PChar type.

The reason for having two is
historical. The String type, which
has always been part of the Pascal
language definition, is imple-
mented as a single length byte fol-
lowed by that number of
characters so that, for example, the
string ‘Fred’ would be imple-
mented as a length byte of 4,
followed by the actual string data.
Variables of this type are quick to
manipulate (since you know imme-
diately how long the string is) but
they’re limited to a maximum of

Variable Type Visual Basic Delphi
Integer Count% Count : Integer;
Long Integer BigCount& BigCount : LongInt;
Single-Precision
Floating Point SmallNum! SmallNum : Single;
Double-Precision
Floating Point BigNum# BigNum : Double;
String Str$ Str : String;

➤ Table 1
Common Visual Basic variable names and Delphi equivalents

type
 Variant = record case Integer of
 0: (IsChar: Char); { now I’m a signed character ! }
 1: (IsByte: Byte); { now I’m an unsigned byte ! }
 2: (IsInteger: Integer); { now I’m an integer! }
 3: (IsWord: Word); { now I’m an unsigned word }
 4: (IsBool: Boolean); { now I’m a Boolean! }
 end;

➤ Listing 1

22 The Delphi Magazine Issue 2

255 characters in length for
obvious reasons.

The PChar type corresponds to a
‘C’ style string and is the type used
when calling any Windows API
routine that expects a string. It
consists simply of a pointer to the
characters in the string, which are
followed by a terminating zero byte
(Hex 00). Such strings have the
advantage that they can be very
long, but string operations are less
efficient. Concatenating one PChar
string to another, for example,
involves scanning both strings for
their corresponding zero bytes
before the actual string data is
copied.

Previous versions of Borland’s
Pascal-based Windows develop-
ment system used PChar exten-
sively and included routines for
converting from String to PChar
and vice-versa. However, with the
advent of Delphi, Borland have
de-emphasised PChar variables:

“Delphi’s VCL library uses String
types almost exclusively and
you’re only likely to need to

convert to a PChar when you
want to ‘hit the metal’ and call a
Windows API routine directly."

Porting your Existing Code
Because of the similarities between
Delphi and Visual Basic regarding
forms, event handling and prop-
erty names, it should be possible,
in principle, to develop an auto-
mated porting tool designed to
copy the bulk of an existing VB
application over to Delphi.

An enterprising American com-
pany, Earth Trek Inc, have devel-
oped an application called Delphi
Conversion Assistant which does
just that. At the time of writing, this
product is still in beta test, but it
looks like it will greatly simplify the
business of moving up to Delphi.
The program doesn’t understand
the format of binary .FRM files
(Microsoft have never released
details of this format), so forms
must be saved as text files before
beginning the conversion process.

For more details on Delphi
Conversion Assistant, you can

reach Earth Trek by email at
72321.742@compuserve.com. [We
plan to carry a review of Conversion
Assistant when it’s ready. Editor]

Finally, here’s another little tip
for those Visual Basic program-
mers who make heavy use of VB’s
DoEvents call. I’ve heard several
ex-VB developers bemoaning the
fact that there seems to be no
equivalent of the DoEvents routine
under Delphi. It turns out that
Delphi does have an equivalent
call, but it’s fairly well hidden!
What you need to do is call
Application.ProcessMessages in-
stead. While you’re at it, take a look
at the other properties and meth-
ods of the Application object:
there’s a lot of good stuff hidden
away in there.

Dave Jewell is a freelance consult-
ant/programmer, specialising in
systems-level work under
Windows and DOS. You can
contact Dave on the internet as
djewell@cix.compulink.co.uk

	A Better Development Environment
	Compilers Versus Interpreters
	A Language with a Difference
	Stringing you along
	Porting your Existing Code

